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On the Real Meaning of Bell's Theorem 
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In the last couple of years many important results have been derived showing 
that Bell's inequalities are nothing else but the indicator of whether certain 
events and their probabilities can be represented within a Kolmogorovian 
probabilistic model. It has become evident that one can derive Bell's inequalities 
without mentioning locality, causality, hidden variables, etc. Many authors 
jumped to the conclusion that the original content of Bell's theorem had lost its 
meaning. I reconsider the original problem posed by Belt and I show that Bell's 
theorem is still valid. 

1. INTRODUCTION 

There were different derivations of Belt's inequalities till the late 1970s 
(Clauser and Shimony, 1978), each using certain assumptions about a 
hidden parameter, locality, and causation. These derivations and the viola- 
tion of Bell's inequalities led to the conclusion that a local (deterministic or 
stochastic) hidden variable explanation of the EPR correlations contradicts 
quantum mechanics as well as the experimental results. Later, probability- 
theoretic investigations focused on the non-Kolmogorovian features of 
quantum probability (Accardi, 1984, t988; De Muynck, 1986; Pitowsky, 
1989; Beltrametti and Maczynski, 1991) discovered that Bell's inequalities 
are particular types of inequalities indicating whether certain events and 
their probabilities (which can be thought of as empirically given) can be 
represented or not within a Kolmogorovian probabilistic model. That is, 
the violation of Bell's inequalities itself has nothing to do with hidden 
parameters, locality, causality, etc. It is a quite common suggestion of this 
quantum probabilistic school that the original form of Bell's theorem loses 
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its meaning. I am going to show in this paper that the situation is much 
more complex and Bell's theorem is still valid. 

2. BELL I N E Q U A L I T I E S  A S  T E S T  OF T H E  K O L M O G O R O V I A N  
C H A R A C T E R  OF A P R O B A B I L I T Y  M O D E L  

First, recall a theorem (Pitowsky, 1989) illustrating that Bell's inequal- 
ities are equivalent with the Kolmogorovian character of a probability 
model. We need some notations and definitions for it: 

Let S be a set of pairs of integers 

S __. {{i,j}ll -< i < j  < n} 

Denote by R(n,  S )  the real space of vectors like ( f l , f 2  . . . .  , fn  . . . .  , 

f,>...) 
For each e~{0, 1} n let u ' be the following vector in R(n,  S): 

U~ : t~i, l < i < n 

u,5. = giej, { i , j } ~ S  

The classical correlation polytope C(n, S )  is the closed convex hull in 
R(n, S) of vectors {u~}~{0,1}, (see Fig. 1). That is, 

~aeR(n,S) a =  ~ 2~u ~ , 2 ~ > 0 , ~ 2 , = 1  C(n, S )  z :  

~e{0,1}  n ) 

Letp  = ( p l , . . . ,  Pn, �9 �9 �9  P,-j, �9 �9 �9 ) ~R(n, S). We say that/~ has a Kolmogoro- 
vian representation i f  there exists a K o l m o g o r o v i a n  probabil i ty space 
(fL Z, #) and (not necessarily distinct) events A~, A2, �9 �9 �9  An EZ such that 

Pi = Iz(Ai), 1 < i < n 

Pij : #(Ai  ~ A j ) ,  { i , j } ~ S  

( O , I , D ~  (I,I,I) 

(0,0,0) (I ,0,0) 

Fig. 1 
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Theorem 1 (Pitowsky, 1989). A correlation vectorfi = ( p ~ , . . . ,  Pn . . . . .  
p;j . . . .  ) has a Kolmogorovian representation if and only if 15 ~C(n, S). 

in case n = 3 the condition p ~ C(n, S) is nothing else but the well- 
known Bell inequalities 

O<-pu <-pi< 1 

0 <-p~ <-p~ <- 1 

Pi + P: -- Pis < I 

Pl +P2 +P3  --Pt2--P13-- /023 -< 1 

Pl --P12 - -Pt3  +P23 >- 0 

P2 --P12 --P23 +P13 ----- 0 

P3 --PI3 --P23 +PI3  -> 0 

In case n = 4 and S = {{1, 3}, {1, 4}, {2, 4}, {2, 4}} the condition 
,fi e C(n, S) is equivalent with the Clauser-Horne inequalities. 

In the EPR-type experiments, the measured probabilities (as well as 
those which are calculated from quantum mechanics) do not satisfy these 
conditions, therefore they do not have a Kolmogorovian representation. 

3. BELL T H E O R E M  > BELL INEQUALITIES  

Because of the fact that the Bell inequalities can be derived without 
mentioning locality, causality, or hidden variables, there has arisen an 
opinion according to which the conditions of the original formulation of 
Bell's theorem have lost their meaning. But this is not true. Let us recall 
Bell's original idea. 

If  we encounter a correlation we can imagine two possibilities: (1) It is 
a direct correlation, that is, one event has a direct influence on the other 
(Fig. 2). (2) It is a common cause correlation, that is, there exists a third 
event in the common past having direct influence on both of them (Fig. 3). 

Fig. 2 
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B 

Fig. 3 

Since events A and B are spatially separated, the direct correlation is 
excluded. This is typically the situation in the case of  the (idealized) EPR 
experiment. The question is whether quantum mechanics is compatible with 
assumption of  a common cause or not. 

Bell investigated this question within the f ramework of a particular 
realization of  a common cause mechanism described by a common parame- 
ter symbolizing all hereditary information f rom the common past, such that 
the measured probabilities are weighted averages of  probabilities depending 
on this parameter.  To make clear the realization of  the original Bell theorem 
to the more recent results, we need the following three theorems: 

Theorem 2. Let A be a parameter  space with a normalized measure p. 
Let probabilities ~(2) = (~1 (2) . . . . .  n,(2) . . . . .  n~:(2) . . . .  ) be dependent on 
the parameter  2 ~ A. Let probabilities p~ be constructed as 

= ~ ~,(2) ap(2) Pi 
3A 

Then 

(V2)[~(2)~6(/-/ ,  S)] ::=> /~ : (Pl  . . . . .  P n , "  . .  , P i j  . . . .  )~C(FI,  S)  

Theorem 3. I f  a correlation vector ~ = (~1, �9 �9 �9 n . . . . . .  ~zu . . . .  ) sa- 
tisfies the independence condition 

(V { i, j }  e S)[rt U = re, . =j ] 

then ~ e C(n, S) .  

From Theorem 2 and Theorem 3 we have the following result. 

Theorem 4. I f  probabilities p = (Pl . . . . .  P . . . . . .  Pu . . . .  ) can be rep- 
resented as 

= f re, (2) @(2) (1) Pi 
3^ 
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Common Cause i 
that is 

Stochastic Hidden Variable + Conditions (2)and (3) 

Theorem 4 Original 
Bell's 

[Kolmogorovian Model I rheo ,m 

Theorem 1 

IBm. tnequaUtie* I < . . . . . . . . .  

~ h ~ e I  

where probabilities ~ = (nl . . . . .  n . . . . . .  nij . . . .  ) satisfy the independence 
condition 

(V~)(V{i, j} ~ S)[rt~j(2) = rt, (,,l,)Tcj (2)1 (2) 

then/~ ~ C(n, S). 

What Bell's theorem states is exactly the same as Theorem 4 states (see 
Scheme I). Bell derived his inequalities from a particular realization of  a 
common cause. It follows from the violation of  these inequalities that Bell's 
particular representation is not possible. 

4. CONCLUSIONS 

We have seen that Bell's inequalities are the test of  the Kolmogorovian 
representability. Bell's theorem belongs to a particular form of  a common 
cause mechanism described by a common parameter symbolizing all hered- 
itary information from the common past, such that the measured probabil- 
ities are weighted averages of probabilities depending on this parameter. 
These parameter-dependent probabilities are not supposed to be Kol- 
mogorovian, but the independence condition makes them Kolmogorovian 
(Theorem 3). In opposition to Accardi (1988), I believe the independence 
condition is not "completely irrelevant for the proof"  of Bell's theorem. 

The restrictive character of Bell's concrete realization of a common 
cause mechanism consists in the assumption that the common cause events 
form a classical Boolean sublattice of  events with a Kolmogorovian proba- 
bility measure. That is why his investigation into the problem of  causation 
is so tightly intertwined with the problem of  hidden variables. Of course, 
there is no reason to suppose that a collection of quantum mechanical 
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events form a Boolean sublattice as well as no reason to suppose that their 
probabilities could be described by a Kolmogorovian probabili ty measure. 
Instead of  this restrictive f ramework a more general realization of  the 
common cause mechanism would be needed. 

5. C O N J E C T U R E  

In order to strengthen the Bell theorem one has to find a more general 
model o f  a common cause and to prove that it also contradicts quantum 
mechanics. I would like finally to give such a very general description of  the 
common cause mechanism. 

Suppose FI,F2 . . . .  ,Fm are common cause events of  events 
A~ . . . .  , A,  (Fig. 4). The minimal assumption about  a common cause 
mechanism is that events Ft,  Fa, �9 � 9  Fm screen off events A 1 , . . . ,  A,,  that 
is, 

(VFk)(V{i,j} eS)[p(Ai ^ Aj) [Fk = p(Ai IFk)p(Aj ]Fk)] 

The quantum mechanical conditioning generates a m a p  over the correla- 
tion vectors: 

Conditioning by F k 
W , W" 

= tr(a,w) .[ v; = t (A, 

peR(n, S) , p' e R(n, S) 

My conjecture is that 

(u =p;p~] =. peC(n, S) 

:J'(C) 

Fig. 4 
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